Electro-osmotic flow over a charged superhydrophobic surface
نویسندگان
چکیده
منابع مشابه
Electro-osmotic flow over a charged superhydrophobic surface.
Bubbles can be trapped inside textured structures such as grooves, forming a superhydrophobic surface. A superhydrophobic surface has a large effective hydrodynamic slip length compared to a smooth hydrophobic surface and holds the promise of enhancing electrokinetic flows that find many interesting applications in microfluidics. However, recent theoretical studies suggested that electro-osmoti...
متن کاملPolymer capture by electro-osmotic flow of oppositely charged nanopores.
The authors have addressed theoretically the hydrodynamic effect on the translocation of DNA through nanopores. They consider the cases of nanopore surface charge being opposite to the charge of the translocating polymer. The authors show that, because of the high electric field across the nanopore in DNA translocation experiments, electro-osmotic flow is able to create an absorbing region comp...
متن کاملPatterning electro-osmotic flow with patterned surface charge.
This Letter reports the measurement of electro-osmotic flows (EOF) in microchannels with surface charge patterned on the 200 microm scale. We have investigated two classes of patterns: (1) Those in which the surface charge varies along a direction perpendicular to the electric field used to drive the EOF; this type of pattern generates multidirectional flow along the direction of the field. (2)...
متن کاملSuppression of electro-osmotic flow by surface roughness.
We show that nanoscale surface roughness, which commonly occurs on microfabricated metal electrodes, can significantly suppress electro-osmotic flows when excess surface conductivity is appreciable. We demonstrate the physical mechanism for electro-osmotic flow suppression due to surface curvature, compute the effects of varying surface conductivity and roughness amplitudes on the slip velociti...
متن کاملElectro-osmotic Flow Through a Rotating Microchannel
An analytical model is presented for electro-osmotic flow through a wide rectangular microchannel rotating about an axis perpendicular to its own. The flow is driven by a steady electric field applied along the channel axis, where the upper and lower walls are charged with uniform but possibly disparate zeta potentials. The aim is to understand the interaction between Coriolis force, pressure g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2010
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.81.066314